WALNUT STREET FIRE COMPANY \# 4

Basic Hydraulics

Hydraulics - the mechanics of fluid at rest and in motion

- solids and gasses can be compressed
- liquids cannot

LAWS OF SCIENCE RELATING TO WATER

Heat Flow - heat is molecular energy
there is no such thing as cold ; cold is the absence of heat
heat flows from hot substances to cold substances
water absorbs heat energy and lowers temperatures to less than that required to sustain combustion
the more water, the more heat is absorbed
volume is the key, not pressure

Specific Heat - one pound of water will absorb one BTU while raising the water temperature one degree F

Latent Heat - quantity of heat absorbed when water converts from liquid to steam Vaporization

Conversion / - when a substance is converted from a liquid to a vapor a volumetric Expansion
water converted to steam expands 1700 times its volume and the expansion is instantaneous

Extinguishment Methods

1. remove oxygen
2. remove heat
3. remove fuel
4. interrupt chemical chain reaction

Heat Absorption - water must absorb heat faster than it is being generated by fire		
	-	volume of water must create heat transfer sufficient to get materials below ignition temperature

FIRE STREAMS

Solid Stream	-	compact stream with a minimum amount of detaching particles
Broken Streams	-	sometimes called straight stream; provides large, coarse, divided droplets that provide good penetration; less volume than solid streams, but more volume than fog streams
Fog Streams	-	small, finely divided droplets of water that absorb heat better than solid or broken streams, convert to steam more rapidly

SIZES AND VOLUMES OF FIRE STREAMS

Small Streams - low volume streams such as booster lines discharging less than 40 gallons per minute

Hand Streams - medium volume stream discharging 40 gpm - $\mathbf{3 5 0}$ gpm
Master Stream - large volume stream discharging 350 - 1500 gpm

NET PUMP DISCHARGE PRESSURE (PDP)
$P D P=F L+N P+A P+E L$
$\mathrm{FL}=$ friction loss (the smaller the hose, the greater the friction loss)
(the longer the hose, the greater the friction loss)

Hose Size	GPM	$\underline{\text { Friction Loss Per } 100 \mathrm{Ft}}$
$13 / 4 "$	150	56.3 psi
2"	250	41.1 psi
$21 / 2 "$	350	26.4 psi
3"	500	21.4 psi
5"	1,000	6.3 psi
NP = nozzle pressure		smooth bore 50 psi

$\mathrm{AP}=$ appliances (siamese, wyes, etc.) average 10 psi loss

EL = elevation loss average 5 psi per floor

SAMPLE PUMP DISCHARGE PRESSURE CHART

(Always leave 20 psi residual intake pressure for safety)

$11 / 2$ "Handline with 100 psi Automatic Nozzle	$\underline{100 \mathrm{Ft}}$	$\underline{150 \mathrm{Ft}}$	$\underline{200 \mathrm{Ft}}$
120 gpm	110 psi	115 psi	120 psi
11/2" Handline with 150 gpm Smooth Bore	105 psi	130 psi	160 psi
13/4"Handline Wih 100 psi Automatic Nozzle	$\underline{100 \mathrm{Ft}}$	$\underline{150 ~ F t}$	$\underline{200 \mathrm{Ft}}$
150 gpm	130 psi	145 psi	160 psi
180 gpm	145 psi	170 psi	190 psi
13/4" Handline with 100 Smooth Bore Nozzle	$\underline{100 \mathrm{Ft}}$	$\underline{150 \mathrm{Ft}}$	$\underline{200 \mathrm{Ft}}$
180 gpm	90 psi	110 psi	130 psi
210 gpm	110 psi	140 psi	170 psi
2" Handline with 100 PSI Adjustable Nozzle	$\underline{100 ~ F t}$	$\underline{150 \mathrm{Ft}}$	$\underline{200 \mathrm{Ft}}$
200 gpm	130 psi	145 psi	160 psi
250 gpm	150 psi	175 psi	200 psi
2" Handline with Smooth Bore Nozzle	$\underline{100 ~ F t}$	$\underline{150 \mathrm{Ft}}$	$\underline{200 \mathrm{Ft}}$
210 gpm (1" tip)	75 psi	90 psi	100 psi
$250 \mathrm{gpm}(11 / 8 "$ tip)	90 psi	110 psi	130 psi
$\underline{21 / 2 "}$ Handline with 100 psi Adjustable Nozzle	$\underline{100 \mathrm{Ft}}$	$\underline{150 \mathrm{Ft}}$	$\underline{200 \mathrm{Ft}}$
300 gpm	120 psi	130 psi	140 psi
350 gpm	125 psi	140 psi	150 psi
Ladder Pipe @ 80 psi Nozzle Pressure	150 psi		

