WALNUT STREET FIRE COMPANY #4

Basic Hydraulics

Hydraulics -	the mechanics of fluid at rest and in motion
--------------	--

- solids and gasses can be compressed
- liquids cannot

LAWS OF SCIENCE RELATING TO WATER

Heat Flow	-	heat is molecular energy	

- there is no such thing as cold; cold is the absence of heat
- heat flows from hot substances to cold substances
- water absorbs heat energy and lowers temperatures to less than that required to sustain combustion
- the more water, the more heat is absorbed
- volume is the key, not pressure

Specific Heat - one pound of water will absorb one BTU while raising the water temperature one degree F

Latent Heat Vaporization

- quantity of heat absorbed when water converts from liquid to steam
- average water temperature in mains is 65 85 degrees F
- water turns to steam at 212 degrees F
- the difference between 212 degrees and the main temperature is the measure of heat absorbing capability

Conversion / Expansion

- when a substance is converted from a liquid to a vapor a volumetric expansion occurs
- water converted to steam expands 1700 times its volume and the expansion is instantaneous

Extinguishment Methods

- 1. remove oxygen
- 2. remove heat
- 3. remove fuel
- 4. interrupt chemical chain reaction

Heat - water must absorb heat faster than it is being generated by fire

Absorption

- volume of water must create heat transfer sufficient to get materials

below ignition temperature

FIRE STREAMS

Solid Stream - compact stream with a minimum amount of detaching particles

Broken - sometimes called straight stream; provides large, coarse, divided Streams droplets that provide good penetration; less volume than solid

streams, but more volume than fog streams

Fog Streams - small, finely divided droplets of water that absorb heat better than

solid or broken streams, convert to steam more rapidly

SIZES AND VOLUMES OF FIRE STREAMS

Small Streams - low volume streams such as booster lines discharging less than 40

gallons per minute

Hand Streams - medium volume stream discharging 40 gpm – 350 gpm

Master Stream - large volume stream discharging 350 – 1500 gpm

NET PUMP DISCHARGE PRESSURE (PDP)

PDP = FL + NP + AP + EL

FL = friction loss (the smaller the hose, the greater the friction loss) (the longer the hose, the greater the friction loss)

<u>Hose Size</u>	<u>GPM</u>	Friction Loss Per 100 Ft
1 3/4"	150	56.3 psi
2"	250	41.1 psi
2 ½"	350	26.4 psi
3"	500	21.4 psi
5"	1,000	6.3 psi

NP = nozzle pressure smooth bore 50 psi combination nozzles 100 psi master streams 80 psi

AP = appliances (siamese, wyes, etc.) average 10 psi loss

EL = elevation loss average 5 psi per floor

SAMPLE PUMP DISCHARGE PRESSURE CHART

(Always leave 20 psi residual intake pressure for safety)

1 ½" Handline with 100 psi Automatic Nozzle	<u>100 Ft</u>	<u>150 Ft</u>	<u>200 Ft</u>
120 gpm	110 psi	115 psi	120 psi
1 1/2" Handline with 150 gpm Smooth Bore	105 psi	130 psi	160 psi
1 3/4" Handline Wih 100 psi Automatic Nozzle	<u>100 Ft</u>	<u>150 Ft</u>	<u>200 Ft</u>
150 gpm	130 psi	145 psi	160 psi
180 gpm	145 psi	170 psi	190 psi
1 3/4" Handline with 100 Smooth Bore Nozzle	<u>100 Ft</u>	<u>150 Ft</u>	<u>200 Ft</u>
180 gpm	90 psi	110 psi	130 psi
210 gpm	110 psi	140 psi	170 psi
2" Handline with 100 PSI Adjustable Nozzle	<u>100 Ft</u>	<u>150 Ft</u>	<u>200 Ft</u>
200 gpm	130 psi	145 psi	160 psi
250 gpm	150 psi	175 psi	200 psi
2" Handline with Smooth Bore Nozzle	<u>100 Ft</u>	<u>150 Ft</u>	<u>200 Ft</u>
210 gpm (1" tip)	75 psi	90 psi	100 psi
250 gpm (1 1/8" tip)	90 psi	110 psi	130 psi
2 ½" Handline with 100 psi Adjustable Nozzle	<u>100 Ft</u>	<u>150 Ft</u>	<u>200 Ft</u>
300 gpm	120 psi	130 psi	140 psi
350 gpm	125 psi	140 psi	150 psi
Ladder Pipe @ 80 psi Nozzle Pressure	150 psi - 200	psi	